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ABSTRACT. The aim of this work was to investigate the effect of marine diesel oil on the development and 
survival of three different species of mangrove propagules with or without a hydrocarbon-degrading bacterial 

consortium and the possible use of propagules for the recovery of mangroves impacted by oil. The study was 
conducted in a greenhouse, near a mangrove from which we collected samples of sediments and propagules of 

Laguncularia racemosa, Avicennia schaueriana and Rhizophora mangle. The bacterial consortium comprised 
Bacillus spp., Rhizobium spp., Pseudomonas spp., Ochrobactrum spp. and Brevundimonas spp. After six 

months, L. racemosa and A. schaueriana only survived in control treatments and R. mangle showed the highest 
survival rates of the three species, indicating that different mangrove species do not respond uniformly to oil 

spills. Propagules of R. mangle are much more resistant and the hydrocarbon-degrading bacterial consortium 
we tested can be applied in the phytoremediation of pollutants. 

Keywords: Laguncularia racemosa, Avicennia schaueriana, Rhizophora mangle, esterase enzyme, dehydro-

genase enzyme, pollution, bioremediation. 

 
 

 

INTRODUCTION 

Mangroves are coastal wetlands that provide a range of 

environmental services including: protection from 

coastal erosion, buffering of pollutants, efficient 

mobilization of carbon and energy, and nutrient 

recycling (Othman, 1994; McKee & Faulkner, 2000; 

Chmura, 2003; Moberg & Rönnbäck, 2003; Valiela et 

al., 2004). This ecosystem serves as a feeding and 

reproductive area and provides protection for a wide 

range of organisms, many of which are of special 

commercial importance to humans (Lee & Shang-Shu, 

2004). Despite their great ecological and economic 

importance, mangroves are one of the principle habitats 

threatened by human actions (Burns et al., 1993; Li et 
al., 2009). Anthropogenic practices such as industrial  
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processing, oil spills and incomplete combustion of 

fossil fuels have caused an accumulation of polycyclic 

aromatic hydrocarbons (PAHs) in the environment 

(Chang et al., 2008) and, because mangroves are coastal 

ecosystems, they are among the primary locations where 
oil spills are concentrated.  

The impact of oil on mangroves, as well as on other 

ecosystems, is related to the type of pollutant, amount 

spilled, toxicity, deposition pattern, retention time and 

the prevailing climatic conditions and tides. When 

petroleum and its derivatives reach mangroves, their 

physical and toxicological effects may be acute (e.g., 

defoliation or death of fauna) and/or chronic (e.g., 
reduced plant reproduction, seed survival, or faunal 

population size) (Burns & Codi, 1998; NOAA, 2002). 

Pollutants that reduce the survival or growth of seedlings 
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may impact the regeneration rate or species composition 
of disturbed mangroves (Proffitt et al., 1995). 

Microbial degradation is believed to be one of the 
major processes remediating PAH-contaminated man-
grove sediments (Hughes et al., 1997). Previous studies 
have reported that indigenous microbial communities 
can exhibit considerable potential to assist oil-
contaminated sediment recovery (Ramsay et al., 2000). 
The complexity of the metabolic processes needed to 
degrade PAHs suggests that no single species of 
microorganism can completely degrade petroleum. 
Instead, it is likely that petroleum degradation occurs 
more efficiently when carried out by complex microbial 
consortia (Komukai-Nakamura et al., 1996; Sugiura et 
al., 1997; Alexander, 1999; Crapez et al., 2002; Brito 
et al., 2006). In nature, biodegradation of oil typically 
involves the activities of a succession of species with 
broad enzymatic capabilities within the microbial 
consortium (Komukai-Nakamura et al., 1996; Foght et 
al., 1999). Bioremediation of polluted sediments using 
oil-degrading and plant growth-promoting bacteria 
(phytoremediation) is considered to be a less invasive 
environmental cleanup approach compared to chemical 
solutions (Korda et al., 1997; Crapez et al., 2002). 

Phytoremediation is an inexpensive strategy, espe-
cially compared to the removal and relocation of 
contaminants. The benefits of phytoremediation 
include healthier soil, and promotion and preservation 
of the indigenous microbial communities that are 
essential to long-term soil bioremediation (Pilon-Smits, 
2005; Mendez & Maier, 2008; Wang et al., 2008). 
Many studies in the literature have reported the 
application of phytoremediation technologies for the 
recovery of environments impacted by oil (Atlas, 1981, 
1995; Balba et al., 1998; Duke et al., 2000; Ramsay et 
al., 2000; Moreira et al., 2011, 2013). However, studies 
focused on the recovery of mangroves impacted by oil 
are scarce (Burns et al., 1999; Ramsay et al., 2000; Ke 
et al., 2003; Brito et al., 2009), especially studies using 
mangrove propagules (Proffitt et al., 1995; Proffitt & 
Devlin, 1998; Ye & Tam, 2007; Zhang et al., 2007). 
Here, in a greenhouse experiment, we investigated the 
effect of marine diesel oil on the development and 
survival of three different species of mangrove 
propagules, with or without hydrocarbon-degrading 
bacterial consortia, and assessed the potential use of 
these propagules for the recovery of mangroves 
impacted by oil. 

MATERIALS AND METHODS 

Experimental design: bioassays on mangrove 
propagules 

All bioassays were conducted in a greenhouse, near to 

the mangrove from which sediment samples were 

collected (Suruí Mangrove, Guanabara Bay, RJ, Brazil; 

22º40’S, 43º06’W). We used a distillate of marine 

diesel, marine diesel oil (MDO), in our bioassays that 

has a lower cetane index and a higher density than 

marine diesel. MDO has a sulfur content of between 

approximately 0.3 and 2.0 m/m % (EPA, 1999). 

Propagules of Laguncularia racemosa, Avicennia 
schaueriana and Rhizophora mangle were harvested 

from mangrove swamps in Rio de Janeiro, Brazil and 

planted in perforated plastic bags (30×18 cm) filled 

with 0.8 kg half sandy and half muddy fresh sediments 

for cultivation in a greenhouse. Propagules were 

subjected to three different treatments: 1) Control, 2) 

MDO, and 3) MDO and a hydrocarbon-degrading 

bacterial consortium (MDO & HDB). For the control, 

mangrove propagules did not receive any treatments. 

For the MDO treatment, propagule rhizospheres 

received 3% MDO. For the MDO & HDB treatment, 

propagule rhizospheres received 3% MDO and an 

inoculation of 107 cells of the hydrocarbon-degrading 

bacterial consortium (see below). Bioassays were 

conducted over the course of six months and 

parameters were quantified at the beginning of the 

bioassay (T0) and every two months thereafter (T2, T4, 

T6). A total of 450 propagules in the perforated plastic 

bags was set up for each treatment, comprising 150 

propagules of each of the three mangrove species. 
Propagule growth was evaluated by measuring their 

height, diameter and number of leaves of all 

propagules. The height of propagules was measured 

from where the stem emerged to the bottom of the most 

distally-opened pair of leaves. Diameter was deter-

mined at the midpoint of the lowest inter-node using a 

digital caliper. The number of emerged leaves was 
counted manually.  

Temperature, pH and oxyreduction potential (Eh) 

were obtained in situ using specific electrodes (YSI 556 

MPS, Multi Probe System) and they were measured at 

the same time on each sampling day. Sediment samples 

were collected at random from three locations in the 

rhizosphere of each propagule. These sediment samples 

were collected using a stainless steel spoons and were 

immediately placed in a separate clean glass pot. These 

samples were conditioned on ice and taken to the 

laboratory for analysis. 

Isolation and taxonomic identification of the 

hydrocarbon-degrading bacterial consortium (HDB) 

and bacterial analysis 

We collected sediment samples from Suruí Mangrove; 

an environment impacted by MDO (Fontana et al., 
2010). These samples were stored for 2 h in sealed 

polythene bags, conditioned on ice, and taken to the 

laboratory for analysis. Sediment samples (1 g) were 
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distributed in Erlenmeyer bottles containing 9 mL of 

filtered seawater (0.45 μm pore), urea (5 g L-1), starch 

(10 g L-1), and MDO (2 mL L-1). Samples were 

incubated for 15 days at room temperature. Aliquots of 

the liquid medium were then plated onto solid medium 

with red Congo agar (0.08%) for 15 days (Krepsky et 

al., 2007), after which the reddish-pink colonies were 

selected and reinoculated into liquid medium to attain a 

bacterial biomass of 107 cells. This medium was added 

with a graduated cylinder to propagule rhizospheres 

once a month for six months. Species within the 

bacterial consortium were identified once bioassays 
were completed (T6). 

DNA extraction of 30 mL HDB cultures was 

performed using a PureLinkTM Genomic DNA Mini Kit 

(Invitrogen) according to the manufacturer’s instructions. 

Extracted DNA was analyzed in 1% agarose gels and 

quantified using a NanodropTM spectrophotometer 

(Thermo Fisher Scientific Inc.). Small subunit (16S) 

rRNA genes were amplified by PCR using the primer 

pair 27F-1401R (Lane, 1991) and a PCR Master mix 

(Promega) was prepared according to the manufac-

turer’s instructions. PCR conditions were: 95°C for 5 

min; 30 cycles of denaturation at 95°C for 1 min, 

annealing at 55°C for 1 min and extension at 72°C for 

5 min. All amplicons were analyzed in a 1.5% sybr-

safe-stained agarose gel and were cloned with a TOPO 

TA cloning kit (Invitrogen Ltd.) according to the 

manufacturer’s instructions. Cloning products were re-

amplified by PCR with the primer pair M13F-1401r. 

PCR-amplified vector inserts of the correct size were 

purified with a PureLink™ PCR Purification Kit 

(Invitrogen). A total of 50 cloning products of each 

sample were sequenced using a BigDye Terminator 

v3.1 Cycle Sequencing Kit (Applied Biosystems) by 

the company Genomic Engenharia Molecular (Brazil), 

using the universal primer T7. DNA sequences were 

assembled with the Bio-Edit Sequence Alignment 

Editor and all trimming, clustering and classifications 

were performed in Mothur (Schloss et al., 2009). 

Sequences were compared using the BLASTX 

algorithm against the National Center for Biotechnology 

Information (NCBI) (http://www.ncbi.nlm.nih.gov) data-

base with the Ribosomal Database Project (RDP) 

(Wang et al., 2007; Cole et al., 2009). 

Bacterial cells was enumerated by epifluorescent 

microscopy (Axiosp 1, Zeiss, triple filter Texas Red-

DAPI-fluorescein isothiocyanate, 1000x magnifi-

cation) and using fluorochrome fluorescein diacetate 

and UV-radiation (Kepner & Pratt, 1994). Esterase 

activity (EST) was analyzed according to Stubberfield 
& Shaw (1990). Dehydrogenase activity (DHA) was 

analyzed using the method described by Houri-

Davignon & Relexans (1989). Kruskal-Wallis analysis 

was used to test the significance of differences among 

treatments and times for each species of mangrove 

propagule. All microbial analysis was done in triplicate 

and data computation employed the Statistic 10.0 

software. The significance level was P ≤ 0.05 and the 
results are shown in Table 1. 

RESULTS 

Our analysis at the end of the experiment revealed that 
the bacterial consortium was formed by five bacterial 

species: Bacillus spp., Rhizobium spp., Pseudomonas 

spp., Ochrobactrum spp. and Brevundimonas spp. This 
bacterial consortium can utilize oil as a source of 

carbon and energy.  

Temperature was not significantly different among 
the three treatments (P > 0.05) (Table 1), but 

temperature varied over time (P ≤ 0.05), ranging from 

25.37 ± 0.27ºC (T0 - Control) to 27.00 ± 0.06ºC (T2 - 
MDO & HDB) for the treatment of R. mangle; from 

25.37 ± 0.27ºC (T0 - Control) to 27.10 ± 0.21ºC (T4 - 
MDO & HDB) for L. racemosa and from 25.63 ± 

0.15ºC (T0 - MDO & HDB) to 26.90 ± 0.32ºC (T6 - 
MDO & HDB) for A. schaueriana (Fig. 1a). The pH of 

the rhizosphere of propagules also did not differ 

significantly between treatments and times (P > 0.05) 
(Fig. 1b). Eh was positive (Fig. 1c), and results were 

significantly different over time for all mangrove 
propagules (P ≤ 0.05, Table 1), with highest mean 

found in T4 (MDO) for the treatment of R. mangle, in 

T6 (MDO & HDB) for L. racemosa and in T4 (MDO 
& HDB) for A. schaueriana, and the means were 258 ± 

1 mV, 247 ± 0.3 mV and 264 ± 2 mV, respectively. 

After two months (T2), A. schaueriana exhibited 
the highest mortality in all three treatments (86, 80 and 

90% in control, MDO and MDO & HDB treatments, 

respectively). After six months (T6), L. racemosa and 
A. schaueriana only survived in the control treatment 

(50 and 10%, respectively). At T6, R. mangle had the 
highest survival rates of the three species; 66% in the 

control treatment, 48% in the MDO treatment, and 59% 
in the MDO & HDB treatment.  

At T6, heights of L. racemosa were the lowest in 
control (3.18 ± 0.20 cm) (Fig. 1d). R. mangle was tallest 

at T6, with mean values of 25.32 ± 0.80 cm for the 
control treatment, 25.40 ± 0.83 cm for the MDO 

treatment, and 27.17 ± 0.76 cm for the MDO & HDB 
treatment. At T6, A. schaueriana survived only in the 

control, with a mean height of 34.40 ± 2.99 cm. These 

differences in heights among species were significant 
over time and between treatments (both P ≤ 0.05, Table 
1). Propagule diameters (Fig. 1e) were significantly 
different over time and between treatments for the three 

species (P ≤ 0.05, Table 1). 
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Table 1. Kruskal-Wallis summary (P-values) of parameters analyzed during bioassays of mangrove propagules impacted 

by oil. Significant effects are indicated in bold. EST: Esterase activity, DHA: Dehydrogenase activity. 

 

Species Factors Temperature Eh pH Height Diameter 
Number 

of leaves 
EST DHA 

Bacterial 

density 

R. mangle 
Times 0.0002 ≤ 0.05 0.6567 ≤ 0.05 ≤ 0.05 ≤ 0.05 0.0348 ≤ 0.05 ≤ 0.05 

Treatments 0.9825 0.4317 0.0641 0.0175 ≤ 0.05 0.0183 0.0116 0.7577 0.7734 

L. racemosa 
Times 0.0003 0.0053 0.4251 ≤ 0.05 ≤ 0.05 ≤ 0.05 0.0001 ≤ 0.05 ≤ 0.05 

Treatments 0.9014 0.1212 0.1457 ≤ 0.05 ≤ 0.05 ≤ 0.05 0.2450 0.4373 0.6353 

A. schaueriana 
Times 0.0006 ≤ 0.05 0.8157 ≤ 0.05 ≤ 0.05 ≤ 0.05 0.0087 0.0001 ≤ 0.05 

Treatments 0.8197 0.3359 0.6491 0.0406 0.0032 0.0462 0.1309 0.6593 0.5801 

 

 

By the end of the first two months (T2), all of the 
species had produced leaves under each of the three 
treatments (Fig. 1f). Thereafter, production of leaves 
was significantly different over time and between 
treatments for the three species (P ≤ 0.05, Table 1). In 
the control treatment, only for A. schaueriana did leaf 
production increase after two months; for the other two 
species, leaf production was constant from T2 until the 
end of the study. Leaf production was mostly similar 
for all species under MDO and MDO & HDB 
treatments.  

Esterase activity in the rhizosphere of the propagules 
was similar for the treatments of L. racemosa and A. 
schaueriana, but there were significant differences 
among the three treatments for R. mangle (P = 0.012, 
Table 1). In general, the control and MDO & HDB 
treatments showed higher esterase activity compared 
with the MDO treatment. For the MDO & HDB 
treatment, highest esterase activities were recorded at 
T2 for all species (Fig. 1g). Mean values of esterase 
activity ranged from 0.07 ± 0.03 µg fluorescein g-1 h-1 
at T4 for the MDO & HDB treatment of A. schaueriana 
to 2.31 ± 0.12 µg fluorescein g-1 h-1 at T2 for the MDO 
& HDB treatment of R. mangle. Dehydrogenase 
activities were highest at the beginning of the 
experiment (T0), but decreased thereafter (Fig. 1h). 
Mean values of dehydrogenase activity ranged from 
0.001 ± 0.001 mg INT-F g-1 (A. schaueriana - MDO at 
T6) to 0.041 ± 0.002 mg INT-F g-1 (L. racemosa - 
control at T0), with mean values only differing 
significantly over time (P ≤ 0.05, Table 1). Bacterial 
density in all propagule rhizospheres increased up to 
the end of bioassays (Fig. 1i). The results ranged from 
2.76×101 ± 3.17×10 cells cm-3 (all mangrove species - 
MDO & HDB at T0) to 7.90×109 ± 4.12x108 cells cm-3 
µC cm-3 (R. mangle - MDO & HDB at T6), with 
significant differences over time (P ≤ 0.05, Table 1). 

DISCUSSION 

Our results reveal that mangrove species respond 

differently to simulated oil spills. We found that R. 

mangle coped much better under an oil spill scenario 

than the other two species, and this finding is in 

agreement with a report showing that propagules of R. 
mangle are resistant to dispersed and undispersed oil 

(Proffitt et al., 1995). Oil coating propagules probably 

forms a blockage, resulting in oxygen deficiency and 

suffocation (Getter et al., 1985; Snedaker et al., 1996). 

The resistance of R. mangle to the effect of oil is 

possibly due to their ability to prevent oil uptake by 

their roots (Getter et al., 1985), in a similar way to how 

this species excludes salt (Tomlinson, 1986; Touchette 

et al., 1992). The high survival of R. mangle in our 

bioassay indicates that propagules of this species are 

well adapted to the conditions found in contaminated 
sediments. 

L. racemosa and A. schaueriana survived and grew 

only under our control conditions, but R. mangle 

exhibited steady growth under all three treatments until 

the end of the study. The effects of oil on survival and 

growth rates of L. racemosa were also tested by Nardes 

et al. (2013), who found that height and diameter of 

propagules were significantly higher for the control 

specimens compared to oil-treated specimens. This 

same pattern was observed by Proffitt et al. (1995) in 

an experiment on the development of R. mangle 

impacted by oil. Other studies on the genus Avicennia 

have shown that oil-treated individuals were shorter 

than controls (Proffitt et al., 1995; Ye & Tam, 2007; 
Naidoo et al., 2010). 

Toxicity may also differ among mangrove species. 

For example, along the coast of São Paulo (Brazil), an 

oil spill caused defoliation of 25.9% in R. mangle, 

43.4% in L. racemosa, and 64.5% in A. schaueriana 

(Lamparelli et al., 1997). Nardes et al. (2013) found for 

L. racemosa that, in the first seven weeks of bioassay, 

defoliation and mortality was significantly higher in 

plants subjected to all the different oil treatments 
compared to the control group.  

Esterase hydrolyzes organic matter and produces 
monomers and oligomers (Weiss et al., 1991), which 
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Figure 1. a) Temperature, b) pH, c) Eh, oxyreduction potential, d) height, e) diameter, f) number of leaves, g) esterase 

activity (EST), h) dehydrogenase activity (DHA) and i) bacterial density of propagules of A. schaueriana, L. racemosa and 

R. mangle impacted by marine diesel oil (MDO) with or without a hydrocarbon-degrading bacterial consortium (HDB). 

 

 
enter bacterial cells to be oxidized by dehydrogenases, 

thereby providing the energy necessary to proliferate 

(Meyer-Reil & Koster, 2000; Fenchel et al., 2012). 

However, in the absence of a mature root, interactions 

between bacteria and propagules are reduced (Bais et 
al., 2004), and in our study the bacterial community 

was not able to promote the growth of propagules, with 

consequent high mortality under the MDO and MDO & 
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HDB treatments. Most of our dead propagules 

exhibited almost no epicotyl or root system expansion, 

as observed by Scherrer (1988) during a simulated oil 

spill experiment. Thus, inhibition of root development 

by oil compounds may induce mortality in propagules 

planted on polluted sediments (Scherrer & Blasco, 

1989).  

Our data suggest that MDO significantly affects the 

development and survival of propagules of L. racemosa 

and A. schaueriana. On the basis of our results, neither 

of these species should be planted on MDO-

contaminated sediments because the success of 

phytoremediation depends on the ability of the plants 

and microbes to tolerate and survive in the sediment. In 

contrast, the high survival of R. mangle propagules is 

linked to the physiology of this species, which has a 

stronger capacity to develop and survive in oil-

contaminated sediments. Thus, propagules of R. 

mangle could be used for phytoremediation of 

mangroves impacted by oil. However, further studies 

are needed to investigate the role of roots and 

associated hydrocarbon-degrading bacteria. 
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